Inhibition of ribulose bisphosphate carboxylase assembly by antibody to a binding protein.

Author:

Cannon S,Wang P,Roy H

Abstract

We have developed an assay to monitor in vitro the posttranslational assembly of the chloroplast protein, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Most of the newly synthesized 55-kD catalytic ("large") subunits of this enzyme occur in a 29S complex together with 60- and 61-kD "binding" proteins. When the 29S complex is incubated with ATP and MgCl2 it dissociates into subunits, and the formerly bound large subunits now sediment at 7S (still faster than expected for a monomer). Upon incubation at 24 degrees C, these large subunits assemble into RuBisCO. The minority of newly made large subunits which are not bound to the 29S complex also sediment at 7S. When endogenous ATP was removed by addition of hexokinase and glucose, the dissociation of the 29S complex was inhibited. Nevertheless, the 7S large subunits assembled into RuBisCO, and did so to a greater extent than in controls retaining endogenous ATP. Thus the 7S large subunits are also assembly competent, at least when ATP is removed. Apparently, in chloroplast extracts, ATP can have a dual effect on the assembly of RuBisCO: on the one hand, even at low concentrations it can inhibit incorporation of 7S large subunits RuBisCO; on the other hand, at higher concentrations it can lead to substantial buildup of the 7S large subunit pool by causing dissociation of the 29S complex, and stimulate overall assembly. At both high and zero concentrations of ATP, however, antibody to the binding protein inhibited the assembly of endogenous large subunits into RuBisCO. Thus it appears that all assembly-competent large subunits are associated with the binding protein, either in the 7S complex or in the 29S complex. The involvement of the binding protein in RuBisCO assembly may represent the first example of non-autonomous protein assembly in higher plants and may pose problems for the genetic engineering of RuBisCO from these organisms.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3