An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage.

Author:

Poole A R,Pidoux I,Reiner A,Rosenberg L

Abstract

Monospecific antibodies to bovine cartilage proteoglycan monomer (PG) and link protein (LP) have been used with immunoperoxidase electron microscopy to study the distribution and organization of these molecules in bovine articular cartilage. The following observations were made: (a) The interterritorial matrix of the deep zone contained discrete interfibrillar particulate staining for PG and LP. This particulate staining, which was linked by faint bands of staining (for PG) or filaments (for LP), was spaced at 75- to 80-nm intervals. On collagen fibrils PG was also detected as particulate staining spaced at regular intervals (72 nm), corresponding to the periodicity of collagen cross-banding. The interfibrillar PG staining was often linked to the fibrillar PG staining by the same bands or filaments. The latter were cleaved by a proteinase-free Streptomyces hyaluronidase with the removal of much of the interfibrillar lattice. Since this enzyme has a specificity for hyaluronic acid, the observations indicate that the lattice contains a backbone of hyaluronic acid (which appeared as banded or filamentous staining) to which is attached LP and PG, the latter collapsing when the tissue is fixed, reacted with antibodies, and prepared for electron microscopy. Thishyaluronic acid is anchored to collagen fibrils at regular intervals where PG is detected on collagen. PG and LP detected by antibody in the interterritorial zones are essentially fully extractible with 4 M guanidine hydrochloride. These observations indicated that interfibrillar PG and LP is aggregated with HA in this zone. (b) The remainder of the cartilage matrix had a completely different organization of PG and LP. There was no evidence of a similar latticework based on hyaluronic acid. Instead, smaller more closely packed particulate staining for PG was seen everywhere irregularly distributed over and close to collagen fibrils. LP was almost undetectable in the territorial matrix of the deep zone, as observed previously. In the middle and superficial zones, stronger semiparticulate staining for LP was distributed over collagen fibrils. (c) In the superficial zone, reaction product for PG was distributed evenly on collagen fibrils as diffuse staining and also irregularly as particulate staining. LP was observed as semiparticulate staining over collagen fibrils. The diffuse staining for PG remained after extraction with 4 M guanidine hydrochloride. (d) In pericellular matrix, most clearly identified in middle and deep zones, the nature and organization of reaction product for PG and LP were similar to those observed in the territorial matrix, except that LP and PG were more strongly stained and amorphous staining for both components was also observed. (e) This study demonstrates striking regional variations of ultrastructural organization of PG and LP in articular cartilage...

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 209 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanobiology of the articular chondrocyte;Bone Cell Biomechanics, Mechanobiology and Bone Diseases;2024

2. Functional Engineering of Load-Supporting Soft Tissues;Comprehensive Structural Integrity;2023

3. Introduction to Cartilage Tissue: Development, Structure, and Functions;Cartilage: From Biology to Biofabrication;2023

4. Ultrashort echo time magnetic resonance imaging of the osteochondral junction;NMR in Biomedicine;2022-11-20

5. Structural origins of cartilage shear mechanics;Science Advances;2022-02-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3