Investigations of the role of the main light-harvesting chlorophyll-protein complex in thylakoid membranes. Reconstitution of depleted membranes from intermittent-light-grown plants with the isolated complex.

Author:

Day D A,Ryrie I J,Fuad N

Abstract

The functions of the light-harvesting complex of photosystem II (LHC-II) have been studied using thylakoids from intermittent-light-grown (IML) plants, which are deficient in this complex. These chloroplasts have no grana stacks and only limited lamellar appression in situ. In vitro the thylakoids showed limited but significant Mg2+-induced membrane appression and a clear segregation of membrane particles into such regions. This observation, together with the immunological detection of small quantities of LHC-II apoproteins, suggests that the molecular mechanism of appression may be similar to the more extensive thylakoid stacking seen in normal chloroplasts and involve LHC-II polypeptides directly. To study LHC-II function directly, a sonication-freeze-thaw procedure was developed for controlled insertion of purified LHC-II into IML membranes. Incorporation was demonstrated by density gradient centrifugation, antibody agglutination tests, and freeze-fracture electron microscopy. The reconstituted membranes, unlike the parent IML membranes, exhibited both extensive membrane appression and increased room temperature fluorescence in the presence of cations, and a decreased photosystem I activity at low light intensity. These membranes thus mimic normal chloroplasts in this regard, suggesting that the incorporated LHC-II interacts with photosystem II centers in IML membranes and exerts a direct role in the regulation of excitation energy distribution between the two photosystems.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3