Receptor-mediated biliary transport of immunoglobulin A and asialoglycoprotein: sorting and missorting of ligands revealed by two radiolabeling methods.

Author:

Schiff J M,Fisher M M,Underdown B J

Abstract

In the rat, all receptor-bindable immunoglobulin A (IgA), and 1-4% of injected asialoglycoprotein (ASG), are transported from blood to bile intact. The major fraction of the ASG is degraded in hepatic lysosomes. The study described here was designed to elucidate the sorting that occurs in hepatocytes subsequent to receptor binding of ligands not sharing the same fate. We show that conjugation of protein with the Bolton and Hunter reagent can be used as a probe for the lysosomal pathway, since 50% of the reagent is released into bile after lysosomal degradation of internalized protein. Radiolabeling by iodine monochloride was alternatively used to follow the direct pathways that deliver intact IgA and ASG to bile. After intravenous injection of labeled proteins, first intact ASG and IgA, and then radioactive catabolites from degraded protein, were released into bile. No proteolytic intermediates were detected, and the transport of IgA or ASG directly to bile was not affected by the lysosomal protease inhibitor leupeptin. These observations indicate that divergence of the direct biliary transport pathways from the degradation pathway occurs at a stage preceding delivery to lysosomes, possibly at the cell surface. Competition studies showed that all three pathways (including the biliary transport of intact ASG) are receptor mediated, but even at supersaturating doses the uptake and processing of IgA and ASG occur independently. We propose that IgA and ASG receptors are not frequently in juxtaposition on the plasma membrane, but that ASG, after binding to its receptor, is occasionally missorted into the biliary transport pool.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3