PKCα regulates the hypertrophic growth of cardiomyocytes through extracellular signal–regulated kinase1/2 (ERK1/2)

Author:

Braz Julian C.1,Bueno Orlando F.1,De Windt Leon J.1,Molkentin Jeffery D.1

Affiliation:

1. Department of Pediatrics, University of Cincinnati, Children's Hospital Medical Center, Cincinnati, OH 45229

Abstract

Members of the protein kinase C (PKC) isozyme family are important signal transducers in virtually every mammalian cell type. Within the heart, PKC isozymes are thought to participate in a signaling network that programs developmental and pathological cardiomyocyte hypertrophic growth. To investigate the function of PKC signaling in regulating cardiomyocyte growth, adenoviral-mediated gene transfer of wild-type and dominant negative mutants of PKCα, βII, δ, and ε (only wild-type ζ) was performed in cultured neonatal rat cardiomyocytes. Overexpression of wild-type PKCα, βII, δ, and ε revealed distinct subcellular localizations upon activation suggesting unique functions of each isozyme in cardiomyocytes. Indeed, overexpression of wild-type PKCα, but not βII, δ, ε, or ζ induced hypertrophic growth of cardiomyocytes characterized by increased cell surface area, increased [3H]-leucine incorporation, and increased expression of the hypertrophic marker gene atrial natriuretic factor. In contrast, expression of dominant negative PKCα, βII, δ, and ε revealed a necessary role for PKCα as a mediator of agonist-induced cardiomyocyte hypertrophy, whereas dominant negative PKCε reduced cellular viability. A mechanism whereby PKCα might regulate hypertrophy was suggested by the observations that wild-type PKCα induced extracellular signal–regulated kinase1/2 (ERK1/2), that dominant negative PKCα inhibited PMA-induced ERK1/2 activation, and that dominant negative MEK1 (up-stream of ERK1/2) inhibited wild-type PKCα–induced hypertrophic growth. These results implicate PKCα as a necessary mediator of cardiomyocyte hypertrophic growth, in part, through a ERK1/2-dependent signaling pathway.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3