Role of microtubule assembly in lysosomal enzyme secretion from human polymorphonuclear leukocytes. A reevaluation.

Author:

Hoffstein S,Goldstein I M,Weissmann G

Abstract

The dose-related inhibition by colchicine of both lysosomal enzyme release and microtubule assembly was studied in human polymorphonuclear leukocytes (PMN) exposed to the nonphagocytic stimulus, zymosan-treated serum (ZTS). Cells were pretreated with colchicine (60 min, 37 degrees C) with or without cytochalasin B (5 microng/ml, 10 min) and then stimulated with ZTS (10%). Microtubule numbers in both cytochalasin B-treated and untreated PMN were increased by stimulation and depressed below resting levels in a dose-response fashion by colchicine concentrations above 10(-7) M. These concentrations also inhibited enzyme release in a dose-response fashion although the inhibition of microtubule assembly was proportionately greater than the inhibition of enzyme release. Other aspects of PMN morphology were affected by colchicine. Cytochalasin B-treated PMN were rounded, and in thin sections the retracted plasma membrane appeared as invaginations oriented toward centrally located centrioles. Membrane invaginations were restricted to the cell periphery in cells treated with inhibitory concentrations of colchicine, and the centrioles and Golgi apparatus were displaced from their usual position. After stimulation and subsequent degranulation, the size and number of membrane invaginations greatly increased. They remained peripheral in cells pretreated with greater than 10(-7) M colchicine but were numerous in the pericentriolar region in cells treated with less than 10(-7) M. Similarly, untreated PMN that were permitted to phagocytose immune precipitates had many phagosomes adjacent to the centriole. After colchicine treatment, phagosomes were distributed randomly, without any preferential association with the centrioles. These data suggest that microtubules are involved in maintaining the internal organization of cells and the topologic relationships between organelles and the plasma membrane.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3