The microtubule catastrophe promoter Sentin delays stable kinetochore–microtubule attachment in oocytes

Author:

Głuszek A. Agata1,Cullen C. Fiona1,Li Wenjing2,Battaglia Rachel A.3,Radford Sarah J.3,Costa Mariana F.1,McKim Kim S.3,Goshima Gohta2,Ohkura Hiroyuki1

Affiliation:

1. Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK

2. Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

3. Waksman Institute, Rutgers University, Piscataway, NJ 08854

Abstract

The critical step in meiosis is to attach homologous chromosomes to the opposite poles. In mouse oocytes, stable microtubule end-on attachments to kinetochores are not established until hours after spindle assembly, and phosphorylation of kinetochore proteins by Aurora B/C is responsible for the delay. Here we demonstrated that microtubule ends are actively prevented from stable attachment to kinetochores until well after spindle formation in Drosophila melanogaster oocytes. We identified the microtubule catastrophe-promoting complex Sentin-EB1 as a major factor responsible for this delay. Without this activity, microtubule ends precociously form robust attachments to kinetochores in oocytes, leading to a high proportion of homologous kinetochores stably attached to the same pole. Therefore, regulation of microtubule ends provides an alternative novel mechanism to delay stable kinetochore–microtubule attachment in oocytes.

Publisher

Rockefeller University Press

Subject

Cell Biology

Reference28 articles.

1. In vivo dynamics of the rough deal checkpoint protein during Drosophila mitosis;Basto;Curr. Biol.,2004

2. Cytological analysis of spermatocyte growth and male meiosis in Drosophila melanogaster;Bonaccorsi,2000

3. Kinetochore fibers are not involved in the formation of the first meiotic spindle in mouse oocytes, but control the exit from the first meiotic M phase;Brunet;J. Cell Biol.,1999

4. The kinetochore;Cheeseman;Cold Spring Harb. Perspect. Biol.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3