Intracellular Ph Regulation by Na+/H+ Exchange Requires Phosphatidylinositol 4,5-Bisphosphate

Author:

Aharonovitz Orit1,Zaun Hans C.2,Balla Tamas3,York John D.4,Orlowski John2,Grinstein Sergio1

Affiliation:

1. Cell Biology Programme, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada

2. Department of Physiology, McGill University, Montréal, Québec, H3G 1Y6, Canada

3. Endocrinology and Reproduction Research Branch, National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510

4. Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710

Abstract

The carrier-mediated, electroneutral exchange of Na+ for H+ across the plasma membrane does not directly consume metabolic energy. Nevertheless, acute depletion of cellular ATP markedly decreases transport. We analyzed the possible involvement of polyphosphoinositides in the metabolic regulation of NHE1, the ubiquitous isoform of the Na+/H+ exchanger. Depletion of ATP was accompanied by a marked reduction of plasmalemmal phosphatidylinositol 4,5-bisphosphate (PIP2) content. Moreover, sequestration or hydrolysis of plasmalemmal PIP2, in the absence of ATP depletion, was associated with profound inhibition of NHE1 activity. Examination of the primary structure of the COOH-terminal domain of NHE1 revealed two potential PIP2-binding motifs. Fusion proteins encoding these motifs bound PIP2 in vitro. When transfected into antiport-deficient cells, mutant forms of NHE1 lacking the putative PIP2-binding domains had greatly reduced transport capability, implying that association with PIP2 is required for optimal activity. These findings suggest that NHE1 activity is modulated by phosphoinositides and that the inhibitory effect of ATP depletion may be attributable, at least in part, to the accompanying net dephosphorylation of PIP2.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3