Activity- and Ca2+-Dependent Modulation of Surface Expression of Brain-Derived Neurotrophic Factor Receptors in Hippocampal Neurons

Author:

Du Jing1,Feng Linyin2,Yang Feng1,Lu Bai1

Affiliation:

1. Unit on Synapse Development and Plasticity, Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4480

2. Institutes of Neuroscience, Shanghai, China 200031

Abstract

Brain-derived neurotrophic factor (BDNF) has been shown to regulate neuronal survival and synaptic plasticity in the central nervous system (CNS) in an activity-dependent manner, but the underlying mechanisms remain unclear. Here we report that the number of BDNF receptor TrkB on the surface of hippocampal neurons can be enhanced by high frequency neuronal activity and synaptic transmission, and this effect is mediated by Ca2+ influx. Using membrane protein biotinylation as well as receptor binding assays, we show that field electric stimulation increased the number of TrkB on the surface of cultured hippocampal neurons. Immunofluorescence staining suggests that the electric stimulation facilitated the movement of TrkB from intracellular pool to the cell surface, particularly on neuronal processes. The number of surface TrkB was regulated only by high frequency tetanic stimulation, but not by low frequency stimulation. The activity dependent modulation appears to require Ca2+ influx, since treatment of the neurons with blockers of voltage-gated Ca2+ channels or NMDA receptors, or removal of extracellular Ca2+, severely attenuated the effect of electric stimulation. Moreover, inhibition of Ca2+/calmodulin-dependent kinase II (CaMKII) significantly reduced the effectiveness of the tetanic stimulation. These findings may help us to understand the role of neuronal activity in neurotrophin function and the mechanism for receptor tyrosine kinase signaling.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3