New immunolatex spheres: visual markers of antigens on lymphocytes for scanning electron microscopy.

Author:

Molday R S,Dreyer W J,Rembaum A,Yen S P

Abstract

New immunochemical reagents consisting of antibodies bound to small latex spheres were used as visual markers for the detection and localization of cell surface antigens by scanning electron microscopy. Cross-linked latex spheres of various sizes from 300 to 3,4000 A in diameter were synthesized by aqueous emulsion copolymerization of methacrylate derivatives containing hydroxyl and carboxyl functional groups. Proteins and other molecules containing primary amino groups were covalently bonded to the acrylic spheres under a variety of mild conditions by the aqueous carbodiimide, cyanogen bromide, and glutaraldehyde methods. For use in the indirect immunochemical-labeling technique, goat antibodies directed against rabbit immunoglobulins were bonded to the spheres. These immunolatex reagents were shown to bind only to cells (red blood and lymphocytes) which had previously been sensitized with rabbit antibodies against cell surface antigens. Mouse spleen lymphocytes with exposed immunoglobulins on their surface (B cells) were labeled with these spheres and distinguished from unlabeled or T lymphocytes by scanning electron microscopy. The distribution of Ig receptors on lymphocytes was also studied using the spheres as visual markers. When lymphocytes were fixed with glutaraldehyde and subsequently labeled with the immunolatex reagents, a random distribution was observed by scanning electron microscopy; a patchy distribution was observed when unfixed lymphocytes were used. These results are consistent with studies using ferritin-labeled antibodies (S. De Petris and M. Raff. 1973. Nature [Lond.]. 241:257.) and support the view that Ig receptors on lymphocytes undergo translational diffusion. In addition to serving as visual markers for scanning electron microscopy, these latex spheres tagged with fluorescent or radioactive molecules have applications as highly sensitive markers for fluorescent microscopy and as reagents for quantitative studies of cell surface antigens and other receptors.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3