The Fine Structure of Muscle Spindles in the Lumbrical Muscles of the Rat

Author:

Merrillees Neil C. R.1

Affiliation:

1. From the Department of Anatomy, University of Washington School of Medicine, Seattle

Abstract

Lumbrical muscles of young rats were fixed with OsO4 and embedded in methacrylate for electron microscopy. The spindle capsule was found to be continuous with and similar in structure to the sheath of Henle surrounding the nerves supplying the spindle. The capsule consists of several closely applied concentric cytoplasmic sheets. Each sheet is about 1,000 A thick and has no fenestrations. Many caveolae and vesicles in the cytoplasm suggest active transport through the sheets. The periaxial space fluid contains much solid material. It is suggested that the capsule and periaxial space regulate internal chemical environment. The interfibrillar structures are less evident in the polar regions of intrafusal fibres than in extrafusal fibres. Simple motor end-plates occur on the polar regions of intrafusal fibres. In the myotube region of the intrafusal fibre a peripheral zone of myofibrils surrounds a cytoplasmic core containing nuclei, mitochondria, Golgi bodies, reticulum, and a few lipid-like granules. Naked sensory endings lie on the myotube "in parallel" with the underlying myofilaments. Naked processes of the primary sensory ending deeply indent the muscle plasma membrane and the underlying wisps of myofilament in the nuclear bag region. The plasma membranes of sensory nerve ending and intrafusal muscle fibre are about 200 A apart.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Protein sample preparation for tissue distribution study;PROTEOMICS – Clinical Applications;2022-11-16

2. Mechanotransduction channels in proprioceptive sensory nerve terminals: still an open question?;Current Opinion in Physiology;2021-04

3. Caveolae as Potential Hijackable Gates in Cell Communication;Frontiers in Cell and Developmental Biology;2020-10-27

4. The caveolae dress code: structure and signaling;Current Opinion in Cell Biology;2017-08

5. Modulating mechanosensory afferent excitability by an atypical mGluR;Journal of Anatomy;2015-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3