Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis.

Author:

Bajer A S

Abstract

The oscillations of chromosomes associated with a single spindle pole in monocentric and bipolar spindles were analysed by time-lapse cinematography in mitosis of primary cultures of lung epithelium from the newt Taricha granulosa. Chromosomes oscillate toward and away from the pole in all stages of mitosis including anaphase. The duration, velocity, and amplitude of such oscillations are the same in all stages of mitosis. The movement away from the pole in monocentric spindle is rapid enough to suggest the existence of a previously unrecognized active component in chromosome movement, presumably resulting from a pushing action of the kinetochore fiber. During prometaphase oscillations, chromosomes may approach the pole even more closely than at the end of anaphase. Together, these observations demonstrate that a monopolar spindle is sufficient to generate the forces for chromosome transport, both toward and away from the pole. The coordination of the aster/centrosome migration in prophase with the development of the kinetochore fibers determines the course of mitosis. After the breaking of the nuclear envelope in normal mitosis, aster/centrosome separation is normally followed by the rapid formation of bipolar chromosomal fibers. There are two aberrant extremes that may result from a failure in coordination between these processes: (a) A monocentric spindle will arise when aster separation does not occur, and (b) an anaphaselike prometaphase will result if the aster/centrosomal complexes are already well-separated and bipolar chromosomal fibers do not form. In the latter case, the two monopolar prometaphase half-spindles migrate apart, each containing a random number of two chromatid (metaphase) monopolar-oriented chromosomes. This random segregation of prometaphase chromosome displays many features of a standard anaphase and may be followed by a false cleavage. The process of polar separation during prometaphase occurs without any visible interzonal structures. Aster/centrosomes and monopolar spindles migrate autonomously by an unknown mechanism. There are, however, firm but transitory connections between the aster center and the kinetochores as demonstrated by the occasional synchrony of centrosome-kinetochore movement. The data suggest that aster motility is important in the progress of both prometaphase and anaphase in normal mitosis.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3