Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength

Author:

DiMilla PA1,Stone JA1,Quinn JA1,Albelda SM1,Lauffenburger DA1

Affiliation:

1. Department of Chemical Engineering, University of Pennsylvania, Philadelphia 19104.

Abstract

Although a biphasic dependence of cell migration speed on cell-substratum adhesiveness has been predicted theoretically, experimental data directly demonstrating a relationship between these two phenomena have been lacking. To determine whether an optimal strength of cell-substratum adhesive interactions exists for cell migration, we measured quantitatively both the initial attachment strength and migration speed of human smooth muscle cells (HSMCs) on a range of surface concentrations of fibronectin (Fn) and type IV collagen (CnIV). Initial attachment strength was measured in order to characterize short time-scale cell-substratum interactions, which may be representative of dynamic interactions involved in cell migration. The critical fluid shear stress for cell detachment, determined in a radial-flow detachment assay, increased linearly with the surface concentrations of adsorbed Fn and CnIV. The detachment stress required for cells on Fn, 3.6 +/- 0.2 x 10(-3) mu dynes/absorbed molecule, was much greater than that on CnIV, 5.0 +/- 1.4 x 10(-5) mu dynes/absorbed molecule. Time-lapse videomicroscopy of individual cell movement paths showed that the migration behavior of HSMCs on these substrates varied with the absorbed concentration of each matrix protein, exhibiting biphasic dependence. Cell speed reached a maximum at intermediate concentrations of both proteins, with optimal concentrations for migration at 1 x 10(3) molecules/micron2 and 1 x 10(4) molecules/micron2 on Fn and CnIV, respectively. These optimal protein concentrations represent optimal initial attachment strengths corresponding to detachment shear stresses of 3.8 mu dyne/micron2 on Fn and 1.5 mu dyne/micron2 on CnIV. Thus, while the optimal absorbed protein concentrations for migration on Fn and CnIV differed by an order of magnitude, the optimal initial attachment strengths for migration on these two proteins were very similar. Further, the same minimum strength of initial attachment, corresponding to a detachment shear stress of approximately 1 mu dyne/micron2, was required for movement on either protein. These results suggest that initial cell-substratum attachment strength is a central variable governing cell migration speed, able to correlate observations of motility on substrata differing in adhesiveness. They also demonstrate that migration speed depends in biphasic manner on attachment strength, with maximal migration at an intermediate level of cell-substratum adhesiveness.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 559 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3