Affiliation:
1. Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
Abstract
Stationary phase (stat-phase) is a poorly understood physiological state under which cells arrest proliferation and acquire resistance to multiple stresses. Lipid droplets (LDs), organelles specialized for cellular lipid homeostasis, increase in size and number at the onset of stat-phase. However, little is known about the dynamics of LDs under this condition. In this paper, we reveal the passage of LDs from perinuclear endoplasmic reticulum association to entry into vacuoles during the transition to stat-phase. We show that the process requires the core autophagy machinery and a subset of autophagy-related (Atg) proteins involved in selective autophagy. Notably, the process that we term stat-phase lipophagy is mediated through a sterol-enriched vacuolar microdomain whose formation and integrity directly affect LD translocation. Intriguingly, cells defective in stat-phase lipophagy showed disrupted vacuolar microdomains, implying that LD contents, likely sterol esters, contribute to the maintenance of vacuolar microdomains. Together, we propose a feed-forward loop in which lipophagy stimulates vacuolar microdomain formation, which in turn promotes lipophagy during stat-phase.
Publisher
Rockefeller University Press
Cited by
179 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献