A MACROMOLECULAR REPEATING UNIT OF MITOCHONDRIAL STRUCTURE AND FUNCTION

Author:

Fernández-Morán H.1,Oda T.1,Blair P. V.1,Green D. E.1

Affiliation:

1. From the Mixter Laboratories for Electron Microscopy, Neurosurgical Service, Massachusetts General Hospital, Boston, and The Department of Biophysics, University of Chicago; and the Institute for Enzyme Research, University of Wisconsin, Madison.

Abstract

A repeating particle associated with the cristae and the inner membrane of the external envelope has been recognized and characterized in beef heart mitochondria by correlated electron microscopic and biochemical studies. Many thousands (ca. 104 to 105) of these particles, disposed in regular arrays, are present in a single mitochondrion. The repeating particle, called the elementary particle (EP), consists of three parts: (1) a spherical or polyhedral head piece (80 to 100 A in diameter); (2) a cylindrical stalk (about 50 A long and 30 to 40 A wide); and (3) a base piece (40 x 110 A). The base pieces of the elementary particles form an integral part of the outer dense layers of the cristae. The elementary particles can be seen in electron micrographs of mitochondria in situ, of isolated mitochondria, and of submitochondrial particles with a complete electron transfer chain. Negative staining with phosphotungstate is only one of several techniques that can be used for reproducible demonstration of the repeating particles and underlying subunit organization of mitochondrial membranes. A particulate unit containing a complete electron transfer chain can be isolated from beef heart mitochondria. The isolated unit approximates in size that of the elementary particle in situ. The molecular weight of the particle in situ is calculated to be 1.3 x 106. Evidence is presented for identifying the isolated unit with the elementary particle visualized in situ. The elementary particle of the mitochondrion is believed to be a prototype of a class of functional particles or macromolecular assemblies of similar size found in association with membranes generally.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 373 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3