A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4

Author:

Michaud Ani12ORCID,Leda Marcin3ORCID,Swider Zachary T.12,Kim Songeun12ORCID,He Jiaye45ORCID,Landino Jennifer6ORCID,Valley Jenna R.7ORCID,Huisken Jan45ORCID,Goryachev Andrew B.3ORCID,von Dassow George7,Bement William M.24ORCID

Affiliation:

1. Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 1

2. Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 2

3. Center for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK 3

4. Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 4

5. Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 5

6. Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, MI 6

7. Oregon Institute of Marine Biology, University of Oregon, Charleston, OR 7

Abstract

Many cells can generate complementary traveling waves of actin filaments (F-actin) and cytoskeletal regulators. This phenomenon, termed cortical excitability, results from coupled positive and negative feedback loops of cytoskeletal regulators. The nature of these feedback loops, however, remains poorly understood. We assessed the role of the Rho GAP RGA-3/4 in the cortical excitability that accompanies cytokinesis in both frog and starfish. RGA-3/4 localizes to the cytokinetic apparatus, “chases” Rho waves in an F-actin–dependent manner, and when coexpressed with the Rho GEF Ect2, is sufficient to convert the normally quiescent, immature Xenopus oocyte cortex into a dramatically excited state. Experiments and modeling show that changing the ratio of RGA-3/4 to Ect2 produces cortical behaviors ranging from pulses to complex waves of Rho activity. We conclude that RGA-3/4, Ect2, Rho, and F-actin form the core of a versatile circuit that drives a diverse range of cortical behaviors, and we demonstrate that the immature oocyte is a powerful model for characterizing these dynamics.

Funder

National Science Foundation

National Institutes of Health

Biotechnology and Biological Sciences Research Council

Leverhulme Trust

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3