UHRF1 promotes spindle assembly and chromosome congression by catalyzing EG5 polyubiquitination

Author:

Qi Xuli12ORCID,Liu Youhong12ORCID,Peng Yuchong345ORCID,Fu Yuxin12ORCID,Fu Yongming345ORCID,Yin Linglong1236ORCID,Li Xiong3456ORCID

Affiliation:

1. Xiangya Hospital, Central South University 1 Department of Oncology, Center for Molecular Medicine, , Changsha, China

2. Xiangya Hospital, Central South University 2 Hunan Key Laboratory of Molecular Radiation Oncology, , Changsha, China

3. Guangdong Pharmaceutical University 3 Center for Clinical Precision Pharmacy, The First Affiliated Hospital, , Guangzhou, China

4. Guangdong Pharmaceutical University 4 Key Specialty of Clinical Pharmacy, The First Affiliated Hospital, , Guangzhou, China

5. Guangdong Pharmaceutical University 5 NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, , Guangzhou, China

6. Guangdong Pharmaceutical University 6 School of Clinical Pharmacy, , Guangzhou, China

Abstract

UHRF1 is an epigenetic coordinator bridging DNA methylation and histone modifications. Additionally, UHRF1 regulates DNA replication and cell cycle, and its deletion induces G1/S or G2/M cell cycle arrest. The roles of UHRF1 in the regulation of G2/M transition remain poorly understood. UHRF1 depletion caused chromosome misalignment, thereby inducing cell cycle arrest at mitotic metaphase, and these cells exhibited the defects of spindle geometry, prominently manifested as shorter spindles. Mechanistically, UHRF1 protein directly interacts with EG5, a kinesin motor protein, during mitosis. Furthermore, UHRF1 induced EG5 polyubiquitination at the site of K1034 and further promoted the interaction of EG5 with spindle assembly factor TPX2, thereby ensuring accurate EG5 distribution to the spindles during metaphase. Our study clarifies a novel UHRF1 function as a nuclear protein catalyzing EG5 polyubiquitination for proper spindle architecture and faithful genomic transmission, which is independent of its roles in epigenetic regulation and DNA damage repair inside the nucleus. These findings revealed a previously unknown mechanism of UHRF1 in controlling mitotic spindle architecture and chromosome behavior and provided mechanistic evidence for UHRF1 deletion-mediated G2/M arrest.

Funder

National Natural Science Foundation of China

National Key Clinical Specialty Construction Project

High Level Clinical Key Speciality

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3