Lipid defect underlies selective skin barrier impairment of an epidermal-specific deletion of Gata-3

Author:

de Guzman Strong Cristina1,Wertz Philip W.2,Wang Chenwei1,Yang Fan13,Meltzer Paul S.13,Andl Thomas4,Millar Sarah E.4,Ho I-Cheng5,Pai Sung-Yun6,Segre Julia A.1

Affiliation:

1. National Human Genome Research Institute and

2. University of Iowa, Iowa City, IA 52242

3. National Cancer Institute, National Institutes of Health, Bethesda, MD 20892

4. Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104

5. Brigham and Women's Hospital, Division of Rheumatology, Immunology, and Allergy and

6. Dana Farber Cancer Institute and Children's Hospital, Combined Department of Pediatric Hematology-Oncology, Harvard Medical School, Boston, MA 02115

Abstract

Skin lies at the interface between the complex physiology of the body and the external environment. This essential epidermal barrier, composed of cornified proteins encased in lipids, prevents both water loss and entry of infectious or toxic substances. We uncover that the transcription factor GATA-3 is required to establish the epidermal barrier and survive in the ex utero environment. Analysis of Gata-3 mutant transcriptional profiles at three critical developmental stages identifies a specific defect in lipid biosynthesis and a delay in differentiation. Genomic analysis identifies highly conserved GATA-3 binding sites bound in vivo by GATA-3 in the first intron of the lipid acyltransferase gene AGPAT5. Skin from both Gata-3−/− and previously characterized barrier-deficient Kruppel-like factor 4−/− newborns up-regulate antimicrobial peptides, effectors of innate immunity. Comparison of these animal models illustrates how impairment of the skin barrier by two genetically distinct mechanisms leads to innate immune responses, as observed in the common human skin disorders psoriasis and atopic dermatitis.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3