Intranuclear filaments containing a nuclear pore complex protein.

Author:

Cordes V C1,Reidenbach S1,Köhler A1,Stuurman N1,van Driel R1,Franke W W1

Affiliation:

1. Division of Cell Biology, German Cancer Research Center, Heidelberg.

Abstract

Nuclear pore complexes (NPCs) are anchoring sites of intranuclear filaments of 3-6 nm diameter that are coaxially arranged on the perimeter of a cylinder and project into the nuclear interior for lengths varying in different kinds of cells. Using a specific monoclonal antibody we have found that a polypeptide of approximately 190 kD on SDS-PAGE, which appears to be identical to the recently described NPC protein "nup 153," is a general constituent of these intranuclear NPC-attached filaments in different types of cells from diverse species, including amphibian oocytes where these filaments are abundant and can be relatively long. We have further observed that during mitosis this filament protein transiently disassembles, resulting in a distinct soluble molecular entity of approximately 12.5 S, and then disperses over most of the cytoplasm. Similarly, the amphibian oocyte protein appears in a soluble form of approximately 16 S during meiotic metaphase and can be immunoprecipitated from egg cytoplasmic supernatants. We conclude that this NPC protein can assemble into a filamentous form at considerable distance from the nuclear envelope and discuss possible functions of these NPC-attached filaments, from a role as guidance structure involved in nucleocytoplasmic transport to a form of excess storage of NPC proteins in oocytes.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3