CYTOCHEMISTRY AND ELECTRON MICROSCOPY

Author:

Sabatini David D.1,Bensch Klaus1,Barrnett Russell J.1

Affiliation:

1. From the Department of Anatomy, Yale University School of Medicine, New Haven.

Abstract

The aldehydes introduced in this paper and the more appropriate concentrations for their general use as fixatives are: 4 to 6.5 per cent glutaraldehyde, 4 per cent glyoxal, 12.5 per cent hydroxyadipaldehyde, 10 per cent crotonaldehyde, 5 per cent pyruvic aldehyde, 10 per cent acetaldehyde, and 5 per cent methacrolein. These were prepared as cacodylate- or phosphate-buffered solutions (0.1 to 0.2 M, pH 6.5 to 7.6) that, with the exception of glutaraldehyde, contained sucrose (0.22 to 0.55 M). After fixation of from 0.5 hour to 24 hours, the blocks were stored in cold (4°C) buffer (0.1 M) plus sucrose (0.22 M). This material was used for enzyme histochemistry, for electron microscopy (both with and without a second fixation with 1 or 2 per cent osmium tetroxide) after Epon embedding, and for the combination of the two techniques. After fixation in aldehyde, membranous differentiations of the cell were not apparent and the nuclear structure differed from that commonly observed with osmium tetroxide. A postfixation in osmium tetroxide, even after long periods of storage, developed an image that—notable in the case of glutaraldehyde—was largely indistinguishable from that of tissues fixed under optimal conditions with osmium tetroxide alone. Aliesterase, acetylcholinesterase, alkaline phosphatase, acid phosphatase, 5-nucleotidase, adenosine triphosphatase, and DPNH and TPNH diaphorase activities were demonstrable histochemically after most of the fixatives. Cytochrome oxidase, succinic dehydrogenase, and glucose-6-phosphatase were retained after hydroxyaldipaldehyde and, to a lesser extent, after glyoxal fixation. The final product of the activity of several of the above-mentioned enzymes was localized in relation to the fine structure. For this purpose the double fixation procedure was used, selecting in each case the appropriate aldehyde.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3