Mechanism of the formation of contractile ring in dividing cultured animal cells. I. Recruitment of preexisting actin filaments into the cleavage furrow.

Author:

Cao L G1,Wang Y L1

Affiliation:

1. Cell Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545.

Abstract

Cytokinesis of animal cells involves the formation of the circumferential actin filament bundle (contractile ring) along the equatorial plane. To analyze the assembly mechanism of the contractile ring, we microinjected a small amount of rhodamine-labeled phalloidin (rh-pha) or rhodamine-labeled actin (rh-actin) into dividing normal rat kidney cells. rh-pha was microinjected during prometaphase or metaphase to label actin filaments that were present at that stage. As mitosis proceeded into anaphase, the labeled filaments became associated with the cortex of the cell. During cytokinesis, rh-pha was depleted from polar regions and became highly concentrated into the equatorial region. The distribution of total actin filaments, as revealed by staining the whole cell with fluorescein phalloidin, showed a much less pronounced difference between the polar and the equatorial regions. The sites of de novo assembly of actin filaments during the formation of the contractile ring were determined by microinjecting rh-actin shortly before cytokinesis, and then extracting and fixing the cell during mid-cytokinesis. Injected rhodamine actin was only slightly concentrated in the contractile ring, as compared to the distribution of total actin filaments. Our results indicate that preexisting actin filaments, probably through movement and reorganization, are used preferentially for the formation of the contractile ring. De novo assembly of filaments, on the other hand, appears to take place preferentially outside the cleavage furrow.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3