Involvement of the stress protein HSP47 in procollagen processing in the endoplasmic reticulum

Author:

Nakai A1,Satoh M1,Hirayoshi K1,Nagata K1

Affiliation:

1. Department of Cell Biology, Kyoto University, Japan.

Abstract

The 47,000-D collagen-binding glycoprotein, heat shock protein 47 (HSP47), is a stress-inducible protein localized in the ER of collagen-secreting cells. The location and collagen-binding activity of this protein led to speculation that HSP47 might participate in collagen processing. Chemical crosslinking studies were used to test this hypothesis both before and after the perturbation of procollagen processing. The association of procollagen with HSP47 was demonstrated using cleavable bifunctional crosslinking reagents. HSP47 and procollagen were shown to be coprecipitated by the treatment of intact cells with anti-HSP47 or with anticollagen antibodies. Furthermore, several proteins residing in the ER were noted to be crosslinked to and coprecipitated with HSP47, suggesting that these ER-resident proteins may form a large complex in the ER. When cells were heat shocked, or when stable triple-helix formation was inhibited by treatment with alpha,alpha'-dipyridyl, coprecipitation of procollagen with HSP47 was increased. This increase was due to the inhibition of procollagen secretion and to the accumulation of procollagen in the ER. Pulse label and chase experiments revealed that coprecipitated procollagen was detectable as long as procollagen was present in the endoplasmic reticulum of alpha,alpha'-dipyridyl-treated cells. Under normal growth conditions, coprecipitated procollagen was observed to decrease after a chase period of 10-15 min, whereas total procollagen decreased only after 20-25 min. In addition, the intracellular association between HSP47 and procollagen was shown to be disrupted by a change in physiological pH, suggesting that the dissociation of procollagen from HSP47 is pH dependent. These findings support a specific role for HSP47 in the intracellular processing of procollagen, and provide evidence of a new category of "molecular chaperones" in terms of its substrate specificity and the dissociation mechanism.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 238 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Code for Collagen Folding Deciphered;2024-02-26

2. Collagen chaperones;Biochemistry of Collagens, Laminins and Elastin;2024

3. A whole genome scan reveals distinct features of selection in Zhaotong cattle of Yunnan province;Animal Genetics;2023-10-05

4. Black phosphorus biomaterials for photo-controlled bone tissue engineering;Composites Part B: Engineering;2022-11

5. Sorting and Export of Proteins at the Endoplasmic Reticulum;Cold Spring Harbor Perspectives in Biology;2022-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3