ULTRASTRUCTURAL BASES FOR METABOLICALLY LINKED MECHANICAL ACTIVITY IN MITOCHONDRIA

Author:

Hackenbrock Charles R.1

Affiliation:

1. From the Department of Anatomy, College of Physicians and Surgeons, Columbia University, New York.

Abstract

By means of a new "quick-sampling" method, micropellets of mouse liver mitochondria were rapidly prepared for electron microscopy during the recording of steady state metabolism. Reversible ultrastructural changes were found to accompany change in metabolic steady states. The most dramatic reversible ultrastructural change occurs when ADP is added to systems in which only phosphate acceptor is deficient, i.e., during the State IV to State III transition as defined by Chance and Williams. After 15 min in State IV, mitochondria display an "orthodox" ultrastructural appearance as is usually observed after fixation within intact tissue. On transition to State III, a dramatic change in the manner of folding of the inner membrane takes place. In addition, the electron opacity of the matrix increases as the volume of the matrix decreases, but total mitochondrial volume does not appear to change during this transition. This conformation is called "condensed." Isolated mitochondria were found to oscillate between the orthodox and condensed conformations during reversible transitions between State III and State IV. Various significant ultrastructural changes in mitochondria also occur during transitions in other functional states, e.g., when substrate or substrate and acceptor is made limiting. Internal structural flexibility is discussed with respect to structural and functional integrity of isolated mitochondria. Reversible changes in the manner of folding of the inner membrane and in the manner of packing of small granules in the matrix as respiration is activated by ADP represent an ultrastructural basis for metabolically linked mechanical activity in tightly coupled mitochondria.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 873 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3