Steady-state dynamics of Cajal body components in the Xenopus germinal vesicle

Author:

Handwerger Korie E.12,Murphy Christine1,Gall Joseph G.1

Affiliation:

1. Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210

2. Department of Biology, Johns Hopkins University, Baltimore, MD 21218

Abstract

Cajal bodies (CBs) are evolutionarily conserved nuclear organelles that contain many factors involved in the transcription and processing of RNA. It has been suggested that macromolecular complexes preassemble or undergo maturation within CBs before they function elsewhere in the nucleus. Most such models of CB function predict a continuous flow of molecules between CBs and the nucleoplasm, but there are few data that directly support this view. We used fluorescence recovery after photobleaching (FRAP) on isolated Xenopus oocyte nuclei to measure the steady-state exchange rate between the nucleoplasm and CBs of three fluorescently tagged molecules: U7 small nuclear RNA, coilin, and TATA-binding protein (TBP). In the nucleoplasm, the apparent diffusion coefficients for the three molecules ranged from 0.26 to 0.40 μm2 s−1. However, in CBs, fluorescence recovery was markedly slower than in the nucleoplasm, and there were at least three kinetic components. The recovery rate within CBs was independent of bleach spot diameter and could not be attributed to high CB viscosity or density. We propose that binding to other molecules and possibly assembly into larger complexes are the rate-limiting steps for FRAP of U7, coilin, and TBP inside CBs.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3