Microinjection of cytoplasm as a test of complementation in Paramecium.

Author:

Haga N,Forte M,Saimi Y,Kung C

Abstract

Mutants in Paramecium tetraurelia, unable to generate action potentials, have been isolated as cells which show no backward swimming in response to ionic stimulation. These "pawn" mutants belong to at least three complementation groups designated pwA, pwB, and pwC. We have found that microinjection of cytoplasm from a wild-type donor into a pawn recipient of any of the three complementation groups restores the ability of the pawn to generate action potentials and hence swim backward. In addition, the cytoplasm from a pawn cannot restore a recipient of the same complementation group, but that from a pawn of a different group can. Electrophysiological analysis had demonstrated that the restoration of backward swimming is not due to a simple addition of ions but represents a profound change in the excitable membrane of the recipient pawn cells. Using known pawn mutants and those which had previously been unclassified, we have been able to establish a perfect concordance of genetic complementation and complementation by cytoplasmic transfer through microinjection. This method has been used to classify pawn mutants that are sterile or hard-to-mate and to examine the ability of cytoplasms from different species of ciliated protozoa to restore the ability to swim backward in the pawn mutants of P. tetraurelia. A cell homogenate has also been fractionated by centrifugation to further purify the active components. These results demonstrate that transfer of cytoplasm between cells by microinjection can be a valid and systematic method to classify mutants. This test is simpler to perform than the genetic complementation test and can be used under favorable conditions in mutants that are sterile and in cells of different species.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3