Live imaging of marked chromosome regions reveals their dynamic resolution and compaction in mitosis

Author:

Eykelenboom John K.1ORCID,Gierliński Marek12ORCID,Yue Zuojun1,Hegarat Nadia3,Pollard Hilary3,Fukagawa Tatsuo4ORCID,Hochegger Helfrid3ORCID,Tanaka Tomoyuki U.1ORCID

Affiliation:

1. Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK

2. Data Analysis Group, School of Life Sciences, University of Dundee, Dundee, UK

3. Genome Damage and Stability Centre, University of Sussex, Brighton, UK

4. Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan

Abstract

When human cells enter mitosis, chromosomes undergo substantial changes in their organization to resolve sister chromatids and compact chromosomes. To comprehend the timing and coordination of these events, we need to evaluate the progression of both sister chromatid resolution and chromosome compaction in one assay. Here we achieved this by analyzing changes in configuration of marked chromosome regions over time, with high spatial and temporal resolution. This assay showed that sister chromatids cycle between nonresolved and partially resolved states with an interval of a few minutes during G2 phase before completing full resolution in prophase. Cohesins and WAPL antagonistically regulate sister chromatid resolution in late G2 and prophase while local enrichment of cohesin on chromosomes prevents precocious sister chromatid resolution. Moreover, our assay allowed quantitative evaluation of condensin II and I activities, which differentially promote sister chromatid resolution and chromosome compaction, respectively. Our assay reveals novel aspects of dynamics in mitotic chromosome resolution and compaction that were previously obscure in global chromosome assays.

Funder

European Research Council

Wellcome Trust

Cancer Research UK

Medical Research Council

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3