ELECTRON MICROSCOPE STUDIES OF THE STRUCTURE OF THE MICROVILLI ON PRINCIPAL EPITHELIAL CELLS OF RAT JEJUNUM AFTER TREATMENT IN HYPO- AND HYPERTONIC SALINE

Author:

Millington P. F.1,Finean J. B.1

Affiliation:

1. From the Department of Medical Biochemistry and Pharmacology, The Medical School, The University of Birmingham, England

Abstract

Immersion of the intestinal tissue, from rat jejunum, in hypertonic saline produced very rapid changes in all regions of the epithelial cells, but the apical region was apparently unaffected by hypotonic solutions for at least ½ hour. In both cases, blistering of the microvilli was taken as the first sign of degenerative changes which finally resulted in a breakdown to large vesicular particles. Consideration of both normal and modified tissue indicates that the core of the microvillus contains either paired strands or tubular structures. Lateral cross-fibres extended from the core to the microvillus membrane and may be an essential part of the supporting structure of the microvillus. Densitometer traces across the microvillus membrane at various stages of modification indicated that this membrane might include a 75 A unit membrane structure with additional components associated at either surface. Interruptions in the membrane were apparently expanded by the hypotonic solutions and these might possibly be distinguished from preparative artefacts.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microvilli;Cellular Domains;2011-05-31

2. Structural and Functional Relationship between the Membrane and the Cytoskeleton in Brush Border Microvilli;Ciba Foundation Symposium 95 - Brush Border Membranes;2008-05-30

3. Emerging Roles of the Actin Cytoskeleton in Cholangiocyte Function and Disease;Seminars in Liver Disease;2002

4. Introduction;Tight Junctions;2001-06-26

5. Role of Vesicle-Mediated Transport Pathways in Hepatocellular Bile Secretion;Seminars in Liver Disease;1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3