Affiliation:
1. Department of Cell Biology, Harvard Medical School, Boston, MA 02115
Abstract
Epithelial mesenchymal transformation (EMT) of the medial edge epithelial (MEE) seam creates palatal confluence. This work aims to elucidate the molecular mechanisms by which TGFβ3 brings about palatal seam EMT. We collected mRNA for PCR analysis from individual transforming MEE cells by laser microdissection techniques and demonstrated that TGFβ3 stimulates lymphoid-enhancing factor 1 (LEF1) mRNA synthesis in MEE cells. We show with antisense β-catenin oligonucleotides that up-regulated LEF1 is not activated by β-catenin in palate EMT. We ruled out other TGFβ3 targets, such as RhoA and MEK1/2 pathways, and we present evidence using dominant-negative Smad4 and dominant-negative LEF1 showing that TGFβ3 uses Smads both to up-regulate synthesis of LEF1 and to activate LEF1 transcription during induction of palatal EMT. When phospho-Smad2 and Smad4 are present in the nucleus, LEF1 is activated without β-catenin. Our paper is the first to show that the Smad2,4/LEF1 complex replaces β-catenin/LEF1 during activation of EMT in vivo by TGFβ3.
Publisher
Rockefeller University Press
Cited by
139 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献