Membrane/microtubule tip attachment complexes (TACs) allow the assembly dynamics of plus ends to push and pull membranes into tubulovesicular networks in interphase Xenopus egg extracts.

Author:

Waterman-Storer C M1,Gregory J1,Parsons S F1,Salmon E D1

Affiliation:

1. Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.

Abstract

We discovered by using high resolution video microscopy, that membranes become attached selectively to the growing plus ends of microtubules by membrane/microtubule tip attachment complexes (TACs) in interphase-arrested, undiluted, Xenopus egg extracts. Persistent plus end growth of stationary microtubules pushed the membranes into thin tubules and dragged them through the cytoplasm at the approximately 20 microns/min velocity typical of free plus ends. Membrane tubules also remained attached to plus ends when they switched to the shortening phase of dynamic instability at velocities typical of free ends, 50-60 microns/min. Over time, the membrane tubules contacted and fused with one another along their lengths, forming a polygonal network much like the distribution of ER in cells. Several components of the membrane networks formed by TACs were identified as ER by immunofluorescent staining using antibodies to ER-resident proteins. TAC motility was not inhibited by known inhibitors of microtubule motor activity, including 5 mM AMP-PNP, 250 microM orthovanadate, and ATP depletion. These results show that membrane/microtubule TACs enable polymerizing ends to push and depolymerizing ends to pull membranes into thin tubular extensions and networks at fast velocities.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3