Hormonal stimulation in the exocrine pancreas results in coordinate and anticoordinate regulation of protein synthesis.

Author:

Schick J,Kern H,Scheele G

Abstract

24-h intravenous caerulein infusion studies in the rat were combined with in vitro amino acid incorporation studies followed by high-resolution separation of proteins by two-dimensional isoelectric focusing and SDS gel electrophoresis to study the extent to which persistent changes in the biosynthesis of exocrine pancreatic proteins are regulated by cholecystokinin-like peptides. Beginning in the third hour of optimal hormone infusion at 0.25 microgram kg-1 h-1, changes were observed in the synthetic rates of 12 proteins, which progressed over the course of the 24-h study. Based on coordinate response patterns, exocrine proteins could be classified into four distinct groups. Group I (trypsinogen forms 1 and 2) showed progressive increases in synthetic rates reaching a combined 4.3-fold increase over control levels. Group II (amylase forms 1 and 2) showed progressive decreases in synthesis to levels 7.1- and 14.3-fold lower than control levels, respectively. Group III proteins (ribonuclease, chymotrypsinogen forms 1 and 2, procarboxypeptidase forms A and B, and proelastase 1) showed moderate increases in synthesis, 1.4-2.8-fold, and group IV proteins (trypsinogen 3, lipase, proelastase 2, and unidentified proteins 1-4) did not show changes in synthesis with hormone stimulation. Regulation of protein synthesis in response to caerulein infusion was specific for individual isoenzymic forms in the case of both trypsinogen and proelastase. The ratio of biosynthetic rates of trypsinogen forms 1 + 2 to amylase forms 1 + 2 increased from a control value of 0.56 to 24.4 after 24 h of hormonal stimulation (43.5-fold increase). Biosynthetic rates for an unidentified protein (P23) with an Mr = 23,000 and isoelectric point of 6.2 increased 14.2-fold, and the ratio of synthesis of P23 to amylase 2 increased 200-fold during caerulein infusion. During hormone stimulation the anticoordinate response in the synthesis of pancreatic glycosidases (decreased synthesis) and serine protease zymogens (increased synthesis) explain previous observations that showed little change in rates of total protein synthesis under similar conditions.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3