New Method for Nucleophilic Substitution on Hexachlorocyclotriphosphazene by Allylamine Using an Algerian Proton Exchanged Montmorillonite Clay (Maghnite-H+) as a Green Solid Catalyst

Author:

Medjdoub Lahouaria,Mohammed Belbachir

Abstract

<p>Nucleophilic substitution on hexachlorocyclotriphosphazene (HCCTP) with allylamine in order to give hexa(allylamino)cyclotriphosphazene (HACTP)  is performed for the first time under mild conditions by using diethylether as solvent to replace benzene which is very toxic. The reaction time is reduced to half and also performed at room temperature but especially in the presence of an eco-catalyst called Maghnite-H<sup>+</sup>. This catalyst has a significant role in the industrial scale. In fact, the use of Maghnite is preferred for its many advantages: a very low purchase price compared to other catalysts, the easy removal of the reaction mixture. Then, Maghnite-H<sup>+</sup> is became an excellent catalyst for many chemical reactions. The structure of HACTP synthesized in the presence of Maghnite-H<sup>+</sup> to 5% by weight is confirmed by <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, <sup>31</sup>P-NMR (Nuclear magnetic resonance) and FTIR (Fourier Transform Infrared spectroscopy). MALDI-TOF (Matrix-Assisted Laser Desorption/Ionisation-time-of-flight mass spectrometry) is used to establish the molecular weight of HACTP which is 471 g/mol. DSC (Differential Scanning Calorimetery) and TGA (Thermogravimetric Analysis) show that HACTP is a crystalline product with a melting point of 88 °C. It is reactive after melting but is degraded from 230 °C. Copyright © 2016 BCREC GROUP. All rights reserved</p><p><em>Received: 28<sup>th</sup> September 2015; Revised: 5<sup>th</sup> December 2015; Accepted: 4<sup>th</sup> January 2016</em></p><p><strong>How to Cite</strong>: Medjdoub, L., Mohammed, B. (2016). New Method for Nucleophilic Substitution on Hexachlorocyclotriphosphazene by Allylamine Using an Algerian Proton Exchanged Montmorillonite Clay (Maghnite-H+) as a Green Solid Catalyst. <em>Bulletin of Chemical Reaction Engineering &amp; Catalysis</em>, 11 (2): 151-160 (doi:10.9767/bcrec.11.2.541.151-160)</p><p><strong>Permalink/DOI:</strong> http://dx.doi.org/10.9767/bcrec.11.2.541.151-160</p>

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3