Self-Polymerization Reaction of Epoxidized Oleic Acid: Kinetic and Product Characterization

Author:

Sawitri Dyah Retno1ORCID,Mulyono Panut2ORCID,Rochmadi Rochmadi2,Budiman Arief2ORCID

Affiliation:

1. Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Islam Indonesia, Jalan Kaliurang KM 14.5, Yogyakarta, Indonesia

2. Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2, Yogyakarta, Indonesia

Abstract

Epoxidized oleic acid can be transformed into vegetable oil-based polyesters through a self-polymerization reaction. This study aims to develop the kinetic model for the polymerization reaction between epoxide and carboxyl groups and the product characterization regarding its functional groups, molecular weight, and thermal stability. The polymerization reaction was carried out at the temperature of 120–180 °C for 2–6 h with the highest conversion of oxirane number up to 97%. Kinetic study showed one-step reaction model between oxirane and carboxylic group gives the activation energy value of 34.71 kJ/mol. Furthermore, the two simultaneous reaction model with further reaction between oxirane group and hydroxyl group also taken into account. The later provides a better agreement between the experimental data and the calculated conversion value. The activation energy values in the first and second steps are 38.61 and 26.00 kJ/mol, respectively. The product characterization showed that adding adipic acid did not significantly affect the polymer's molecular weight and thermal stability. The polydisperse characteristics of the poly(oleic acid) produced in this study enable poly(oleic acid) to be used as a lubricant, a polymer additive, or a precursor to produce polymers with higher molecular weights by taking advantage of the accessibility of OH groups. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Funder

LPDP

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3