Ag-TiO2 for Efficient Methylene Blue Photodegradation Under Visible Light Irradiation

Author:

Widiyandari Hendri12ORCID,Nashir Muhammad1,Parasdila Hanaiyah1,Almas Khanza Fadhilah1,Suryana Risa1ORCID

Affiliation:

1. Department of Physics, Faculty of Mathematics and Natural Science, Sebelas Maret University, Jl. Ir. Sutami 36A Surakarta, Central Java, 57126, Indonesia

2. Centre of Excellence for Electrical Energy Storage Technology, Sebelas Maret University, Jl. Slamet Riyadi 435, Surakarta, Central Java 57146, Indonesia

Abstract

Photocatalysis is one of the environmentally friendly methods for degrading down wastewater contamination. TiO2 as one of the photocatalyst material is claimed can enhance the photocatalytic activity much better, if the band gap energy is reduced. In order to reduce the bandgap energy of TiO2, the novel in this research is that the temperature variations over a 24-hour period at 100 °C, 120 °C, 140 °C, and 160 °C in hydrothermal process to synthesize the photocatalyst material with Ag-doped. Diffraction patterns of Ag-TiO2 show that all sample have tetragonal crystal structure and an anatase phase which also has excellent crystallinity. Some of the nanoparticles on the surface of Ag-TiO2 have a consistent morphology, while other particles are formed irregularly. According to the DRS UV-Vis result, bandgap energy reduced as temperature increased (Eg = 3.2 eV to 2.32 eV). The results from PL Ag-TiO2 160 have the lowest intensity, which indicates a low rate of electron-hole recombination. The Ag-TiO2 160 sample produced the best photocatalytic activity, according to the results of the MB degradation test, with a relative change in concentration of 92.98% for 2 h under visible light. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Funder

The Ministry of Education, Culture, Research, and Technology Republic of Indonesia

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3