Synthesis of CuO, ZnO and SnO2 Coupled TiO2 Photocatalyst Particles for Enhanced Photodegradation of Rhodamine B Dye

Author:

Kadem Amna Jwad1,Tan Zhuang Min1,Mohana Suntharam Nanthini1,Pung Swee-Yong1ORCID,Ramakrishnan Sivakumar1ORCID

Affiliation:

1. School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

Abstract

Environmental pollution is a global problem and dye pollution is one of the major factors. TiO2 shows promising photocatalytic properties that can degrade organic pollutants such as dye under ultraviolet (UV) irradiation. However, TiO2 possesses some disadvantages such as a wide band gap and a high recombination rate of electron-hole pairs. Coupling TiO2 with various metal oxides can enhance photocatalytic properties. In this work, photodepositon (reduction of metal ions on TiO2) followed by the thermal oxidation method were used for the coupling of TiO2 with CuO, ZnO, or SnO2 under various methanol concentrations (25 vol% or 50 vol%) and deposition duration (1 h or 3 h) to observe the effect of these parameters on the photocatalytic degradation activity on Rhodamine B (RhB) dye (up to 90 min). The rate constant of the photodegradation reaction (k) has improved from 0.0141 min−1 (uncoupled TiO2) to 0.0151~0.0368 min−1. Overall, CuO/TiO2 and SnO2/TiO2 samples have shown similar photocatalytic properties (average rate constants of 0.0341 min−1 and 0.0327 min-1, respectively), and both performed better than ZnO/TiO2 in terms of RhB photodegradation (average rate constants of 0.0197 min−1). The difference in photocatalytic performance can be explained by the bandgap of metal oxides and their relative band positions with TiO2. Lastly, CuO/TiO2 (50 vol%, 3 h) and SnO2/TiO2 (50 vol%, 3 h) have shown the best photocatalytic properties respectively due to a longer deposition time and higher concentration methanol, resulting in more deposited materials. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Funder

Ministry Of Higher Education Malaysia

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 1D/2D Rod-sheet Shape Bi2S3 Photocatalyst for Photocatalytic Reduction Cr(VI) under Visible Light;Bulletin of Chemical Reaction Engineering & Catalysis;2023-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3