Synthesis of NiFe2O4/SiO2/NiO Magnetic and Application for the Photocatalytic Degradation of Methyl Orange Dye under UV Irradiation

Author:

Hariani Poedji Loekitowati1ORCID,Said Muhammad1ORCID,Rachmat Addy1ORCID,Salni Salni2,Aprianti Nabila3ORCID,Amatullah Anisa Fitri1

Affiliation:

1. Research Group on Magnetic Materials, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir 30662, Indonesia

2. Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir 30662, Indonesia

3. Doctoral Program of Environmental Science, Graduate School, Universitas Sriwijaya, Palembang 30139, Indonesia

Abstract

NiFe2O4/SiO2/NiO magnetic was successfully synthesized using NiFe2O4, SiO2, and NiO as the core, interlayer, and shell, respectively. NiFe2O4/SiO2/NiO under UV light irradiation was used for photocatalytic degradation of methyl orange dye with different pH, catalyst dose, and initial dye concentration. This composite was characterized by X-ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR), Scanning Electron Microscopy-Electron Dispersive X-ray Spectroscopy (SEM-EDs), Vibrating Sample Magnetometer (VSM), UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS), and Point of Zero Charge (pHpzc). The results showed that the composite is a superparamagnetic material with a saturation magnetization value of 44.13 emu/g. It also has a band gap of 2.67 eV with a pHpzc of 6.33. The optimum conditions for photocatalytic degradation were at pH of 4; 0.50 g/L catalyst dose, and 10 mg/L initial concentration. NiFe2O4/SiO2/NiO degradation efficiency to methyl orange dye was 95.76%. The photocatalytic degradation in different concentrations follows the pseudo-first-order, where the greater the concentration, the smaller the constant rate (k). After five cycles of repeated usage, NiFe2O4/SiO2/NiO has good catalytic performance as well as efficient and favourable of a recyclable photocatalyst. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Funder

Ministry of Education, Culture, Research and Technology, Republic of Indonesia

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3