Synthesis of Mesoporous ZnO•SiO2 Nanocomposite from Rice Husk for Enhanced Degradation of Organic Substances Including Janus Green B under Visible Light

Author:

Nguyen Thu Huong1,Vu Tuan Cuong2,Le Trung Phong2,Nguyen Thu Huyen2,Do Xuan Truong1,Vu Anh-Tuan1ORCID

Affiliation:

1. School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi, Viet Nam

2. Nguyen Gia Thieu High School, Hanoi, Viet Nam

Abstract

Rice husk (RH) is often mentioned as an agricultural by-product, often used in the pass as fertilizer and for raw burning. With modern science, RH have been researched and found many new potential benefits and applications. In this study, RH were used to synthesize amorphous SiO2, which was used to prepare the ZnO•SiO2 nanocomposites by a hydrothermal method. The as-synthesized materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and N2 adsorption/desorption isotherm. Their photocatalytic properties were studied by an ultraviolet-vis spectrophotometer and a fluorescence spectrophotometer. The ZnO•SiO2 nanocomposite has an excellent ability to degrade organic substances such as dyes, antibiotics, caffeine, etc. The effects of operating parameters on the photo-degradation reaction progress, including catalyst dosage, initial dye concentration, and pH of the initial dye were investigated in detail. In addition, the photodegradation rate of the dye on the ZnO•SiO2 nanocomposite was evaluated using the pseudo-first-order model. The ZnO•SiO2 nanocomposite can be used as a photocatalyst for wastewater treatment as it detaches much more easily from the solution. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Funder

Vingroup Innovation Foundation

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3