Synthesis and Characterisation of Graphene Oxide Catalysts for Glycerol Acetylation

Author:

Hidayati Nur1ORCID,Khoiruddin Wahib1,Purnama Herry1ORCID,Effendy Marwan2

Affiliation:

1. Department of Chemical Engineering, Universitas Muhammadiyah Surakarta, Jalan Ahmad Yani, Tromol Pos I, Pabelan Kartasura Surakarta 57102, Indonesia

2. Department of Mechanical Engineering, Universitas Muhammadiyah Surakarta, Jalan Ahmad Yani, Tromol Pos 1, Pabelan Kartasura Surakarta 57102, Indonesia

Abstract

Glycerol in large quantities as a by-product of biodiesel production is a promising feedstock to be converted into more valuable products such as acetin. In this work, acetin converted from glycerol acetylation with acetic acid was performed over graphene oxide as a catalyst in a batch reactor. The study's objective was to evaluate the effect of sodium nitrate amount in the catalyst preparation on the catalyst's characteristics and catalytic performance. The graphene oxide (GO) catalysts were charac­terised by various tests, such as SEM-EDX for their morphology, the nitrogen adsorption capacity using Breneur-Emmet Teller (BET), structural analysis using XRD, functional group us­­ing FTIR, and catalytic activity on glycerol acetylation. The GO1, GO2, and GO3 catalysts were varied based on the NaNO3 amount in the modified Hummer method. The experiments found that the NaNO3 amount in catalyst preparation plays a vital role in GO structure formation. The GO2 catalyst has the highest performance, as indicated by the highest surface area, pore volume, and size. High glycerol conversion (94 %) and selectivity toward the interest products of triacetin (24 %) and diacetin + triacetin (83 %) were reached in 2 h of reaction using three wt.% catalysts, 110 °C reaction temperature, and 1:9 molar ratio of glycerol to acetic acid. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Funder

Ministry of Research and Technology / National Agency for Research and Innovation Indonesia

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3