Kinetic and Isotherm Studies of Nitrate Adsorption in Salt Water Using Modified Zeolite

Author:

Kuntari Kuntari1

Affiliation:

1. Chemical Analysis Program, Faculty of Mathematics and Science, Islamic University of Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta

Abstract

Nitrate is the main form of nitrogen species in natural waters. Excessive nitrate concentration in water is highly undesirable, so that removal of the excessive nitrates in waters is very important. However, the challenge is purposed to remove the excessive nitrates in sea waters by considering anions-rich sea water. Adsorption is a favorable method for the nitrate removal process. Therefore, this research was aimed to study the kinetics and isotherm of nitrates adsorption in salt water. The adsorbent preparation was done by modifying natural zeolite with iron oxide. The adsorbent characterization was carried out by FT-IR spectroscopy and Gas Sorption Analyis methods. The results showed that the modified zeolite have Fe−O group vibrations as indicated by a peak at a wave number of 1404.18 cm−1 and an increased specific surface area. The modified zeolite is capable of adsorbing nitrate ions. The adsorption isotherms studies indicated that the modified zeolite is appropriate to the Dubinin-Radushkevich model. The average adsorption energy value (ED), obtained based on the Dubinin-Radushkevich isotherm <2 kJ/mole, showed that the nitrate adsorption on zeolite surface occurred physically. The most suitable adsorption kinetics model is the pseudo second order with the rate constant of 1.80´10−2 g/mg.min. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Funder

Universitas Islam Indonesia

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3