Abstract
Mathematical modeling is an important feature concerning the analysis and control of dynamic systems. Also, system identification is an approach for building mathematical expressions from experimental data taken from processes performance. In this context, the contemporaneous state of the art describes several modelling and identification techniques which are excellent alternatives to determine systems behavior through time. This paper presents a comprehensive review of the main techniques for modeling and identification from a parametric and no parametric perspective. Experimental data are taken from an electrical machine that is a DC motor from a didactic platform. The paper concludes with the analysis of results taken from different identification procedures.
Reference42 articles.
1. Almeida, M. P., Muñoz, M., de la Parra, I., & Perpiñán, O. (2017). Comparative study of PV power forecast using par-ametric and nonparametric PV models. Solar Energy, 155, 854-866.
2. Bermon, S., Metelkina, A., & Rendas, M. J. (2018, September). Comparison of parametric and non-parametric population modelling of sport performances. In 2018 26th European Sig-nal Processing Conference (EUSIPCO) (pp. 301-305). IEEE.
3. Bespalko, D. T., Amini, A., & Boumaiza, S. (2016, January). A high-order model looking beyond the first-order harmonic superposition assumption. In 2016 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR) (pp. 42-44). IEEE.
4. Chico, A., “Informe profesional,” Ph.D. dissertation, Escuela Superior Politécnica del LitoraL, 2015.
5. Cho, Y. U., & Kang, G. H. (2016, June). The force identification of 200kW IPMSM using phase reference spectrum. In 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific) (pp. 818-821). IEEE.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献