On a boundary value problem for a system of differential equations modeling the electrical activity of the brain

Author:

Patrina Anastasia S.1ORCID

Affiliation:

1. Derzhavin Tambov State University

Abstract

The Hopfield-type model of the dynamics of the electrical activity of the brain which is a system of differential equations of the form u ̇_i (t)=-αv_i (t)+∑_(j=1)^n▒〖w_ji f_δ (v_j (t-τ_ji))+I_i (t),i=(1,n) ̅,t≥0.〗 is under discussion. The model parameters are assumed to be given: α>0, τ_ii=0, w_ii=0, τ_ji≥0, and w_ji>0 at i≠j, I_i (t)≥0 at t≥0. Activation function f_δ (δ — the time of the transition of a neuron to the state of activity) is considered of two types: δ=0⇒f_0 (v)={■(0,&v≤θ,@1,&v>θ;)┤ δ>0⇒f_δ (v)={■(0,&v≤θ,@δ^(-1) (v-θ),&θ<v≤θ+δ,@1,&v>θ+δ.)┤ For the system of differential equations under consideration, a boundary value problem with the conditions v_i (0)-v_i (T)=γ_i, i=(1,n) ̅ is studied. In both cases δ=0 (discontinuous function f_0) and δ>0 (f_0 continuous function), a solution exists, and if δ>(T|W|_(R^n→R^n ))/(1-e^(-αT) ),где W=(w_ij )_(n×n), the problem has a unique solution. The work also provides estimates for the solution and its derivative. Theorems on fixed points of continuous mappings of metric and normed spaces and on fixed points of monotonic mappings of partially ordered spaces are used. The results obtained are applied to the study of periodic solutions of the differential system under consideration.

Publisher

Tambov State University - G.R. Derzhavin

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3