A Vision Transformer Network With Wavelet-Based Features for Breast Ultrasound Classification

Author:

He Chenyang,Diao Yan,Ma Xingcong,Yu Shuo,He Xin,Mao Guochao,Wei Xinyu,Zhang Yu,Zhao Yang

Abstract

Breast cancer is a prominent contributor to mortality associated with cancer in the female population on a global scale. The timely identification and precise categorization of breast cancer are of utmost importance in enhancing patient prognosis. Nevertheless, the task of precisely categorizing breast cancer based on ultrasound imaging continues to present difficulties, primarily due to the presence of dense breast tissues and their inherent heterogeneity. This study presents a unique approach for breast cancer categorization utilizing the wavelet based vision transformer network. To enhance the neural network’s receptive fields, we have incorporated the discrete wavelet transform (DWT) into the network input. This technique enables the capture of significant features in the frequency domain. The proposed model exhibits the capability to effectively capture intricate characteristics of breast tissue, hence enabling correct classification of breast cancer with a notable degree of precision and efficiency. We utilized two breast tumor ultrasound datasets, including 780 cases from Baheya hospital in Egypt and 267 patients from the UDIAT Diagnostic Centre of Sabadell in Spain. The findings of our study indicate that the proposed transformer network achieves exceptional performance in breast cancerclassification. With an AUC rate of 0.984 and 0.968 on both datasets, our approach surpasses conventional deep learning techniques, establishing itself as the leading method in this domain. This study signifies a noteworthy advancement in the diagnosis and categorization of breast cancer, showcasing the potential of the proposed transformer networks to enhance the efficacy of medical imaging analysis.

Publisher

Slovenian Society for Stereology and Quantitative Image Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3