Author:
Chiranjeevi Karri,Jena Umaranjan
Abstract
A novel Vector Quantization (VQ) technique for encoding the Bi-orthogonal wavelet decomposed image using hybrid Adaptive Differential Evolution (ADE) and a Pattern Search optimization algorithm (hADEPS) is proposed. ADE is a modified version of Differential Evolution (DE) in which mutation operation is made adaptive based on the ascending/descending objective function or fitness value and tested on twelve numerical benchmark functions and the results are compared and proved better than Genetic Algorithm (GA), ordinary DE and FA. ADE is a global optimizer which explore the global search space and PS is local optimizer which exploit a local search space, so ADE is hybridized with PS. In the proposed VQ, in a codebook of codewords, 62.5% of codewords are assigned and optimized for the approximation coefficients and the remaining 37.5% are equally assigned to horizontal, vertical and diagonal coefficients. The superiority of proposed hybrid Adaptive Differential Evolution and Pattern Search (hADE-PS) optimized vector quantization over DE is demonstrated. The proposed technique is compared with DE based VQ and ADE based quantization and with standard LBG algorithm. Results show higher Peak Signal-to-Noise Ratio (PSNR) and Structural Similiraty Index Measure (SSIM) indicating better reconstruction.
Publisher
Slovenian Society for Stereology and Quantitative Image Analysis
Subject
Computer Vision and Pattern Recognition,Acoustics and Ultrasonics,Radiology, Nuclear Medicine and imaging,Instrumentation,Materials Science (miscellaneous),General Mathematics,Signal Processing,Biotechnology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献