1. G. Abrams, J. P. Bell, and K. M Rangaswamy, The Dixmier-Moeglin equivalence for Leavitt path algebras, Algebr. Represent. Theory 15 (2002), no. 3, 407-425.
2. M. Artin and J. T. Stafford, Noncommutative graded domains with quadratic growth, Invent. Math. 122 (1995), no. 2, 231-276.
3. Y. A. Bachturin, Identities in the universal envelopes of Lie algebras. Collection of articles dedicated to the memory of Hanna Neumann, IX, J. Austral. Math. Soc. 18 (1974), 10-21.
4. J. Bell, S. Launois, and B. Nolan, A strong Dixmier-Moeglin equivalence for quantum Schubert cells, J. Algebra 487 (2017), 269-293.
5. J. Bell, S. Launois, O. León Sánchez, and R. Moosa, Poisson algebras via model theory and differential-algebraic geometry, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 7, 2019-2049.