A New Methodology Based on Artificial Intelligence for Estimating the Compressive Strength of Concrete from Surface Images

Author:

Doğan GamzeORCID,Özkiş AhmetORCID,Arslan Musa HakanORCID

Abstract

This study used digital image processing and an artificial neural network (ANN) to determine the compressive strength of concrete in reinforced concrete buildings without coring. First, 32 concrete samples were produced in the laboratory, with different water-to-cement ratios, aggregate types, amounts of binder, compression values applied to fresh concrete, and amounts of additive. Next, the locations of 192 cores were visualized, and the compressive strengths of their corresponding core samples were matched with the surface images of the concrete, which were then digitized by image processing. The digitized images were the input layer, and the training and testing procedures were performed using the ANN as an output layer. After testing, the model was validated in existing reinforced concrete buildings. For the verification process, 20 cores taken from randomly selected concrete buildings were used. Although the results obtained from the samples produced in the laboratory were satisfactory, the success rate of the samples taken from the field was limited. Finally, the findings of this study are compared against the literature on this subject, especially from the last two decades.

Publisher

Universidad Nacional de Colombia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3