Evaluating supervised learning approaches for spatial-domain multi-focus image fusion

Author:

Atencio Ortiz PedroORCID,Sanchez GermanORCID,Branch Bedoya John WilliamORCID

Abstract

La fusión de imágenes genera una imagen  que combina las características más relevantes de un conjunto de imágenes de la misma escena adquiridas con diferentes cámaras o configuraciones. La Fusión de Imágenes Multifoco (MFIF) parte de un conjunto de imágenes con diferente distancia focal para generar una imagen  con una profundidad de campo extendida. Lo que constituye una solución al problema de la profundidad de campo limitada en la configuración de un sistema óptico. La literatura muestra una amplia variedad de trabajos que abordan este problema. Las transformaciones de dominios y el análisis de bloques de píxeles son la base de los principales enfoques propuestos. En este trabajo se presenta una evaluación de diferentes sistemas de aprendizaje supervisado aplicados a MFIF, incluyendo k-vecinos más cercanos, análisis discriminante lineal, redes neuronales y máquinas de soporte vectorial. El método inicia con dos imágenes de la misma escena, pero con diferentes distancias focales que se dividen en regiones rectangulares. El objetivo principal del sistema de clasificación, que está basado en aprendizaje de máquina, es elegir las partes de ambas imágenes que deben estar en la imagen fusionada para obtener una imagen completamente enfocada. Para la cuantificación del enfoque se utilizaron las métricas más populares propuestas en la literatura como: la Energía Laplaciana, el Laplaciano Modificado por Suma y el Gradiente de Energía, entre otras. La evaluación del método propuesto incluye la fase de prueba de los clasificadores y las métricas de calidad de fusión utilizadas comúnmente en la investigación, tales como la fidelidad de la información visual y la característica de información mutua. Los resultados muestran que el concepto de clasificación automática puede abordar satisfactoriamente el problema MFIF.

Publisher

Universidad Nacional de Colombia

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3