Author:
Santos Sousa Alex Rodrigo dos
Abstract
In bayesian wavelet shrinkage, the already proposed priors to wavelet coefficients are assumed to be symmetric around zero. Although this assumption is reasonable in many applications, it is not general. The present paper proposes the use of an asymmetric shrinkage rule based on the discrete mixture of a point mass function at zero and an asymmetric beta distribution as prior to the wavelet coefficients in a non-parametric regression model. Statistical properties such as bias, variance, classical and bayesian risks of the associated asymmetric rule are provided and performances of the proposed rule are obtained in simulation studies involving artificial asymmetric distributed coefficients and the Donoho-Johnstone test functions. Application in a seismic real dataset is also analyzed.
Publisher
Universidad Nacional de Colombia
Subject
Statistics and Probability
Reference29 articles.
1. Abramovich, F. & Benjamini, Y. (1996), ‘Adaptive thresholding of wavelet coefficients’, Computational Statistics and Data Analysis 22(4), 351–361.
2. Abramovich, F., Sapatinas, T. & Silverman, B. (1998), ‘Wavelet thresholding via a bayesian approach’, Royal Statistical Society pp. 725–749.
3. Angelini, C. & Vidakovic, B. (2004), ‘Gama-minimax wavelet shrinkage: a robust incorporation of information about energy of a signal in denoising applications’, Statistica Sinica (14), 103–125.
4. Antoniadis, A., Bigot, J. & Sapatinas, T. (2001), ‘Wavelet estimators in nonparametric regression: a comparative simulation study’, Journal of Statistical Software (6), 1–83.
5. Beenamol, M., Prabavathy, S. & Mohanalin, J. (2012), ‘Wavelet based seismic signal de-noising using shannon and tsallis entropy’, Computers and Mathematics with Applications (64), 3580–3593.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献