Abstract
The study of the structure of the covariance matrix when the dimension of the data is much greater than the sample size (high dimensional data) is a complicated problem, since we have many unknown parameters and few data. Several hypothesis tests for the covariance matrix, in the high dimensional context and in the classical case (where the dimension of the data is less than the sample size), can be found in the literature. It has been of interest the tests for the null hypothesis that the covariance matrix of Gaussian data is equal or proportional to the identity matrix, considering the classical case as well as the high dimensional context. Since it is important to have a wide comparison between these tests found in the literature, and for some of them it is difficult to have theoretical results about their powers, in this work we compare several tests by simulations, in terms of the size and power of the test. We also present some examples of application with real high dimensional data found in the literature.
Publisher
Universidad Nacional de Colombia
Subject
Statistics and Probability
Reference19 articles.
1. Anderson, T. W. (1984), An Introduction to Multivariate Statistical Analysis, John Wiley & Sons, Inc.
2. Bai, Z., Jiang, D., Yao, J. F. & Zheng, S. (2009), 'Corrections to LRT on large-dimensional covariance matrix by RMT', The Annals of Statistics 37(6B), 3822-3840.
3. Cai, T. T. & Ma, Z. (2013), 'Optimal hypothesis testing for high dimensional covariance matrices', Bernoulli 19(5B), 2359-2388.
4. Chen, S. X., Zhang, L.-X. & Zhong, P.-S. (2010), 'Tests for high-dimensional covariance matrices', Journal of the American Statistical Association 105(490), 810-819.
5. Cortez-Elizalde, D. (2020), Pruebas de hipótesis para la matriz de covarianza poblacional de datos de dimensión alta, Tesis de Maestría, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Básicas, Cunduacán, México.