Behavior of Some Hypothesis Tests for the Covariance Matrix of High Dimensional Data

Author:

Bolivar-Cime AddyORCID,Cortez-Elizalde Didier

Abstract

The study of the structure of the covariance matrix when the dimension of the data is much greater than the sample size (high dimensional data) is a complicated problem, since we have many unknown parameters and few data. Several hypothesis tests for the covariance matrix, in the high dimensional context and in the classical case (where the dimension of the data is less than the sample size), can be found in the literature. It has been of interest the tests for the null hypothesis that the covariance matrix of Gaussian data is equal or proportional to the identity matrix, considering the classical case as well as the high dimensional context. Since it is important to have a wide comparison between these tests found in the literature, and for some of them it is difficult to have theoretical results about their powers, in this work we compare several tests by simulations, in terms of the size and power of the test. We also present some examples of application with real high dimensional data found in the literature.

Publisher

Universidad Nacional de Colombia

Subject

Statistics and Probability

Reference19 articles.

1. Anderson, T. W. (1984), An Introduction to Multivariate Statistical Analysis, John Wiley & Sons, Inc.

2. Bai, Z., Jiang, D., Yao, J. F. & Zheng, S. (2009), 'Corrections to LRT on large-dimensional covariance matrix by RMT', The Annals of Statistics 37(6B), 3822-3840.

3. Cai, T. T. & Ma, Z. (2013), 'Optimal hypothesis testing for high dimensional covariance matrices', Bernoulli 19(5B), 2359-2388.

4. Chen, S. X., Zhang, L.-X. & Zhong, P.-S. (2010), 'Tests for high-dimensional covariance matrices', Journal of the American Statistical Association 105(490), 810-819.

5. Cortez-Elizalde, D. (2020), Pruebas de hipótesis para la matriz de covarianza poblacional de datos de dimensión alta, Tesis de Maestría, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Básicas, Cunduacán, México.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3