Optimal Allocation Algorithm of Geological and Ecological High-resolution Remote Sensing Monitoring Sampling Points

Author:

Bi Taifu

Abstract

Abstract: The purpose of this study is to solve the problem of unsatisfactory image representation of monitoring sampling points in high-resolution remote sensing due to the complexity of geological ecology. Firstly, three algorithms used in remote sensing technology were introduced, that is, extraction algorithm of monitoring sampling point (selective search algorithm), discriminant algorithm (support vector machine) and BING algorithm. Then, the BING algorithm was improved. Finally, the superiority of the improved BING algorithm was verified through experimental data set. The results showed that selective search algorithm could generate more candidate windows in remote sensing image and had better adaptability. The improved algorithm had higher quality of candidate windows extracted from remote sensing images. Although the IBING algorithm could greatly improve the extraction speed of remote sensing, the detection time of each image became larger. Such testing times were still acceptable. Therefore, in this research, the allocation algorithm of geological and ecological high-resolution remote sensing monitoring sampling points was optimized, which had a good guiding significance for the application of remote sensing technology in geological and ecological research.

Publisher

Universidad Nacional de Colombia

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3