Author:
Liang Shujun,Cheng Jing,Zhang Jianwei
Abstract
Soil remote sensing image classification is the most difficult in the National Soil Census work. Current soil remote sensing image classification methods based on deep learning and maximum likelihood estimation are challenging to meet the actual needs. Therefore, this paper combines deep learning with maximum likelihood estimation and proposes a maximum likelihood classification method for soil remote sensing images based on deep learning. The method is divided into four parts. Firstly, the pretreatment of soil remote sensing image is carried out, including three processes: image gray, image denoising, and image correction; secondly, the target of soil remote sensing image is detected by deep learning algorithm; thirdly, the maximum likelihood algorithm is used to classify soil remote sensing image; finally, the classification performance is tested by an example. The results show that this method can effectively segment the remote sensing image of soil, and the segmentation accuracy is high, which proves the effectiveness and superiority of the method.
Publisher
Universidad Nacional de Colombia
Subject
General Earth and Planetary Sciences
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献