Maximum Likelihood Classification of Soil Remote Sensing Image Based on Deep Learning

Author:

Liang Shujun,Cheng Jing,Zhang Jianwei

Abstract

Soil remote sensing image classification is the most difficult in the National Soil Census work. Current soil remote sensing image classification methods based on deep learning and maximum likelihood estimation are challenging to meet the actual needs. Therefore, this paper combines deep learning with maximum likelihood estimation and proposes a maximum likelihood classification method for soil remote sensing images based on deep learning. The method is divided into four parts. Firstly, the pretreatment of soil remote sensing image is carried out, including three processes: image gray, image denoising, and image correction; secondly, the target of soil remote sensing image is detected by deep learning algorithm; thirdly, the maximum likelihood algorithm is used to classify soil remote sensing image; finally, the classification performance is tested by an example. The results show that this method can effectively segment the remote sensing image of soil, and the segmentation accuracy is high, which proves the effectiveness and superiority of the method.

Publisher

Universidad Nacional de Colombia

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel deep learning model for extracting arable land from high-resolution remote sensing images in hilly areas: a case study in the Sichuan Basin of Southwest China;Geocarto International;2024-01

2. Soil Classification using Deep Learning Techniques;2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS);2023-08-23

3. A survey of machine learning and deep learning in remote sensing of geological environment: Challenges, advances, and opportunities;ISPRS Journal of Photogrammetry and Remote Sensing;2023-08

4. Land Cover Change Detection and Prediction in the Fafan Catchment of Ethiopia;Journal of Geovisualization and Spatial Analysis;2023-07-01

5. Comparative Study of Different Ground Objects Classification Based on UAV Orthophoto;Proceedings of the 2023 8th International Conference on Multimedia and Image Processing;2023-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3