Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements

Author:

Ye Xiaoling,Yang Xing,Xiong Xiong,Yang Shuai,Chen Yang

Abstract

Quality control can effectively improve the quality of surface meteorological observations. To ensure the stability and effectiveness of a quality control model under different terrain and climate conditions, it is necessary to structure a quality control model with strong generalization ability. Algorithms such as the Random Forest provide such generalization ability. However, machine learning algorithms are slower than traditional mathematical models. Therefore, a Random Forest quality control algorithm based on the Principal Component Analysis (PCA-RF) is proposed in this paper. Fifteen target stations under different climatic and geomorphological conditions were selected and tested using observations collected four times daily at neighboring stations from 2005-2014. The results show that using PCA to analyze the elemental composition and select elements with high correlation factors, as well as applying the Random Forest algorithm, can effectively reduce the run time and keep the accuracy of the model. The training sample dependence, model prediction accuracy and error detection rate of the PCA-RF model are superior to those of the Spatial Regression method. Therefore, the PCA-RF method is a better-quality control model for the spatial quality control of multiple elements of surface air temperature observations.

Publisher

Universidad Nacional de Colombia

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3